≡ Menu

Neurological Impairment


In Europe, we should not forget that in the past widespread damage to children’s brain function has resulted from exposure to neurotoxic chemicals, including lead, mercury, and PCBs.  1 in 6 children in the USA now has a developmental disability, which include learning disabilities, attention deficit disorders, and behavioural problems. The statistics for Europe are likely to be comparable.  Interacting genetic, environmental, and social factors are important determinants of childhood brain development and function. However, chemicals in the environment are a preventable cause of deficits in brain function in children. CHEM Trust therefore calls for strengthened laws to reduce exposures to neurotoxic chemicals.

View CHEM Trust’s briefing on Neurological impairment in children

The developmental neurotoxic properties of lead, mercury and PCBs were picked up by epidemiology, after the damage to children had been done.  Prior testing of these chemicals was inadequate, and therefore widespread exposure and harm to the population at large occurred and was not prevented.

In 2007, some 200 eminent scientists from five continents signed on to ‘The Faroe’s Statement: Human Health Effects of Developmental Exposure to Chemicals in Our Environment’. This noted that exposure to common chemicals makes babies more likely to develop an array of health problems later in life, including diabetes, attention deficit disorders, prostate cancer, fertility problems, thyroid disorders and even obesity.  If children are exposed to various toxic substances when  still in the womb, or in very early life,  growth of critical organs and functions can be skewed.  In a process called “fetal programming,” these children can become susceptible to diseases later in life, and possibly pass on the susceptibility to their offspring.

The possibility that chemicals might also interfere with the normal ageing process and contribute to memory deficits in old age should also be a concern.  With an increasingly aged population this could also have gross financial and societal repercussions.

Unfortunately, only a very few chemicals have ever been tested for their ability to de-rail brain development.  Current test methods are costly and time consuming, and there is a need to develop better methods to identify chemicals with developmental neurotoxic properties.

Much of the testing may not be adequate to predict the human consequences of long-term, low-level exposures.  For example, the neurotoxic effects of prenatal or early-life exposure to lead, polychlorinated biphenyls, and methylmercury in humans occur at intake levels about three orders of magnitude lower than those predicted from tests on rats.  Humans may be particularly sensitive because of the complexity of the human brain and because brain development in humans occurs over a long period. Indeed, there may be no safe levels.  Current methods of risk assessment, which extrapolate safe levels for humans from tests on rats and mice, may over-estimate safe levels for humans, and therefore leave people unprotected.

Worryingly some chemicals have been shown to have developmental neurotoxic properties in animal experiments but regulatory action is not quickly forthcoming.  For example deca-BDE (deca brominated diphenyl ether), is a flame retardant used in many consumer products.  A Swedish study on mice, reported in 2003, that deca-BDE caused effects on brain development.  Then in 2006, another study from the USA also showed that deca-BDE may cause effects on brain function in rodents.  But ten years since concern about developmental neurotoxicity was first raised, the use of this substance in consumer products is still widespread. The fact that deca-BDE has been listed on the REACH candidate list of substances of very high concern in 2012 will hopefully finally put an end to it being marketed in the EU, although products containing it will still be in our homes for many years to come.